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LE'ITER TO THE EDITOR 

/ 

The Schur rotation as a simple approach to the transition 
between quasiperiodic and periodic phases 

M Baake, D Joseph and P Kramer 
Institut f i r  Theoretische Physik. Universitkt Tiibingen, Auf der Morgenstelle 14, D-7400 
Tiibingen, Federal Republic of Germany 

Received 21 June 1991 

Abstract. The recently observed transition of CrNiSi from the octahedral lo a cubic phase 
[I] has a natural mathematical counterpart in terms o f  a one-parameleer Schur rotatian. 
We present the corresponding tilings and the diffrqction patterns of 8-rcalteren at vertex 
positions for'a series of rotation angles. These angles show up as a length scaling in the 
patterns and provide a measurable order parameter. We comment on the rational reductions 
and give two further examples, one on a connection between octagonal and dodecagonal 
patterns and one on a transition between icosahedral and primitive or bodycentred cubic 
p h a E e s. 

Recently, Kuo [l]  has reported on an  interesting transition of a Ct-Ni-Si alloy from 
a quasiperiodic phase with octagonal symmetry (a so-called octagonal T-phase) to a 
periodic phase of p-Mn type through various intermediate phases with fourfold 
symmetry. It is the aim of this short note to present a mathematical basis for the 
development of explicit structure models of this transition. 

In the experiment cited, the octagonal T-phase was looked at along the axis of 
eightfold symmetry wherefore the electron diffraction image showed d8 symmetry. 
Heating the probe, Kuo observed the transition to a periodic phase where d ,  is replaced 
by d.,. To outline our ideas, we will restrict ourselves to a description of the 2~ plane 
perpendicular to the eightfold axis, which is justified by the structure of the T-phase. 
In the quasiperiodic case, the diffraction pattern is rather well described by a structure 
based on the well known octagonal quasilattice [Z, 31. The minimal embedding into 
higher-dimensional space requires dimension 4 and the canonical choice is the hyper- 
cubic lattice Z4. The physical space Ell is determined as one of the two unique invariant 
subspaces WRT d8 which is a subgroup of n(4), the point group of the lattice Z4. Here, 
d, = ((gs, s)) with the representation 

This reducible representation of d8 splits into two inequivalent irreducible ones, 

ur(g) U-'  = Tred(g) g E 4  (2) 
/ c  -s  0 o \  

T " ' ( g ) = ( '  0 0 c' -s' and F ( s )  := 110 

\o 0 s' c, /  

(3) 



L962 Letter to the Editor 

where 

e:= cos(8) s:= sin(&) c':= cos(58) s'=sin(SS) (4) 

and 8 := 27r/8. The choice of 58 as rotation angle in E, might look unusual but does 
not change the pattern and its structure and facilitates the reduction to the subgroup 
d4 since 5 = l(mod 4). The reduction matrix U in (2) reads 

wherefrom one can extract the projection images wll(ej), 7rL(e,) of the lattice basis in 
Ell and Eli respectively. 

Now, if we restrict the representation of d ,  to the subgroup d4=((g4,s)), g,=g,, 
we find 

2 

) and Tred(s) as above 
Ted(g.,):=l@( cos(f.r) . -sin(+) 

sin(t7r) COS(~T) 

Le,, the representations in Ei and EL are identical. The consequences of this general 
situation were pointed out in the similar situation of the tetrahedral group [4]: 
According to Schur's lemma, the invariant subspaces Ell and E, are no longer unique; 
we now have a non-trivial phase freedom, 

Therefore we have 

T"d(h) = U,T(h)U,'  h E d4 

with 

U, = R( +) . U U,= U. ( 9 )  
- .  lnis means that we obtain a whoie one-parameier famiiy of iiiings with d ,  symmetry 
by rotating Ell according to the Schur rotation R(+) with the 'Schur angle' +. For a 
dense but countable set of angles + one finds periodic tilings; the generic case is the 
quasiperiodic one. 

It is illustrative to write down the reduction matrix explicitly, 

/ f - l  v$(f+i) 0 -v$(f+S)\  
0 & E + ; )  f-S &f+l) 

f + l  -&E-?) 0 &f-l) 
U, := 4 I 1 0 -G(;-;) (f+S) -&;-;) 

/ f - l  v$(f+i) 0 -v$(f+S)\  
0 & E + ; )  f-S &f+l) 

f + l  -&E-?) 0 &f-l) 
U, := 4 I 1 0 -G(;-;) (f+S) -&;-;) 

E=cos(+), :=sin(+), because one can see that *e, and *e, on the one hand and *et 
and *e4 on the other hand build, in the projection to Ell or to E,, two regular 4-stars 
with a relative angle of 45" independent of 4. Therefore, the influence of + is on the 
size of the 4-stars only, and one finds the relative scale to be 
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The quantity 7 is just one simple possibility to give 4 a geometric meaning in Ell alone 
and contains nothing new in comparison with 4. It can be measured from the diffraction 
image if one has found a consistent indexing of the spots in the (generic) quasiperiodic 
case, where vII(e,), . . . , rll(e4) are linearly independent over the integers. 

The reduction is rational if and only if tan 4 = ( p  - q f i ) / (  p +  qv'?) with coprime 
integers p and q. Then, we find square lattices rll and Ts in Ell and E,, respectively, 
such that rll x rL is a sublattice of Ed. Let us choose rll and rl to be maximal WRT 

to be Jpz+2q' for p odd and for p even. Consequently, the index of the 
translation subgroup compatible with EllOE, is 

this property. %.ex, ho:h r,, axd rL possess !he same !attic- c0Xs:"nt which t"T"S nu! 

if p odd 
if p even 

r = [E*: Til x r,] = 

From this Formuia one can try io pick ou i  a suiiabie periodic phase with the righi 
lattice constant relative to the octagonal quasiperiodic phase at q5 = O", say. Here, the 
transition to a periodic phase leads to a tiling with the corresponding periodicity. 

To illustrate the mechanism, we show in figure 1 a series of 6 patterns obtained by 
thestandarddualization method [ S ,  61 forschurangles between q5 = 0" (7 = 1,octagonal 
case) and 4 =45" (7=0, periodic case with minimal period). The corresponding 
..l..r.l.llllr UI.II~LILIV.. of 8-sca::erers a! vecex positians i- presetxed in  figure 2 (fer 
details on the construction algorithm and the Fourier formulas used here, see [6,7]). 
Figure 2 ( a )  (q5 = 0") presents the eightfold symmetry of the octagonal pattern (figure 
I(a)). In figure 2 ( b )  (4  -2")  the exact eightfold symmetry is broken leaving only 
fourfold symmetry behind, although many similarities to the eightfold case can still 
be seen. Figure 2 ( c )  (4 = 12") and figure 2 ( d )  ( + = Z O O )  show the transition within the 
fourfold symmetry. In figure 2 ( e )  (4 =30") one can see an obvious step towards the 
periodic phase with the shortest lattice constant (figure I ( f ) ,  figure 2(f)). The small 
spots which surround the higher intensities will move towards the big spots and decrease 
simultaneously. Finally, this leads to the periodic case of figure 2( f )  (4 = 45"). 

Although we have not explicitly calculated the transition from the octagonal to the 
periodic phase by means of Landau theory, it is plausible that the Schur rotation with 
a single parameter provides a correct tool to do  so and the dimensionless quantity 7 
defined in (11) is the natural candidate for an  order parameter which is directly 
accessible in experiment. 

At this point, we would like to mention two other interesting applications of Schur 
rotations. First, the same technique presented above can be used for the root lattice 
D4 to connect quasiperiodic phases with eight- and twelvefold symmetry by a con- 
tinuous transition that preserved fourfold symmetry [ 8 ] .  This should prove useful for 
the description of V,,Ni,,Si which can coexist in both phases with the same 
stoichiometry [9, IO]. Like in the E4 case one can also get infinitely many periodic 
phases. Second, the transition between the primitive icosahedral phase and a cubic 
phase mentioned earlier was obtained by a Schur rotation [4, 111 which preserved 
tetrahedral symmetry. 

Let us explain the situation with the icosahedral group in a little more detail, 
starting from the hypercubic lattice 8". Its point group I s  the group Cl(6) (12J which 
contains the icosahedral group Y, in  such a way that the canonical representation of 
n(6), when reduced to Yh, splits into two inequivalent 3D irreps of Yh [4]: 

T " d ( g ) =  U T ( g ) U - '  y h  (13) 

L:..a..."*:.. A;.z-"..*:-" 



L964 Letter to the Editor 

o_. , 
pattern with fourfold symmetry obtained a1 6 =45" 
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0 .  

Figure 2. ( a )  The Fourier image of the octagonal quasiperiodic pattern, 4 =O'. ( b )  The 
Fourier image of the quasiperiodic pattern with fourfold symmetry obtained at 4 = 2'. ( L . )  

4 =  12",(d) 4=20' , (e)  4=30",(/) the Fourierimageoftheperiodicpatternwithf~ourfold 
symmetry obtained at 4 = 45". 
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with 

s 0 c - - s  0 -\  c I o c s o  

I c s 0 c - - s  0 
0 --s c 0 --s -c I U : = d  

I c 0 --s -c  0 --s 

--s c 0 --s - c  0 

and c=cos(a) ,  s=s in(a) ,  a =itan- '  (2). 
On the other hand, when further restricted to the tetrahedral subgroup, one obtains 

two identical 3~ irreps and thus again the phase freedom for a Schur rotation. Let us 
take U = U( +) as the corresponding reduction matrix where + = a gives back (13). 
Now, for tan(+)=p/q,  we obtain a rational reduction and we find 3~ sublattices rll 
and rl of Z6 in Ell and E,, respectively, with index 

where we have taken p and q coprime. 
The two situations correspond to a body centred cubic lattice ( p =  q mod 2) or to 

a primitive cubic lattice ( p  f q mod 2) in Ell. All 3~ lattices rli obtained from rational 
reduction possess cubic point symmetry which does, however, stem from a Z6 symmetry 
only for + = k.rr/4, k E 2 Z +  1 .  Precisely in the latter cases also the complete structure 
obtained by the projection method will show the cubic symmetry. In all the other 
cases, the full cell structure has only tetrahedral point symmetry and the additional, 
non-tetrahedral point transformations cannot be lifted to a symmetry of Z6, if we keep 
the specific embedding of the tetrahedrl group T. This embedding is required in order 
to get T simultaneously as a subgroup of Yh and hence to get the link to the 
quasicrystalline icosahedral phase by Schur rotation. 

Let us briefly describe the analogue of (1 1) where a candidate for an order parameter 
was given. Here, we have the vectors e, +e2+ e3 and e4+ e, + e, as natural candidates, 
wherefore we define 

These findings are summarized in the following diagram, where-according to the 
previous remark-the reduction at + = 45" is singled out as the rational reduction via 
the full cubic group n ( 3 )  while the cubic symmetry of + = 0" is accidental and the 
reduction leads only to the tetrahedral group T. 

n(6) 

T /Y\ U, 

4 z o o ,  7 = 1 +=31.7", 7) T - 3  =45", 7 = 0 (17) 
primitive cubic isocahedral 

Here, ~ = f ( l + A )  is the golden mean. It is interesting to note that precisely the 
icosahedral and the bcc phase seem to be related experimentally [13]. 
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Motivated by experimental observations we have outlined the simplest possible 
scheme of transitions between different phases that maintain the maximal common 
symmetry. This was achieved by the so-called Schur rotation. Although this is an 
operation in higher-dimensional space, the rotation angle gives rise to a measurable 
quantity in physical space E,. Therefore we think that it could be useful for an explicit 
structure model as well as for understanding similarities between 'neighbouring' phases. 

 ne authors are gratefui to M Schiottmann and Ii Zeidier for heipfui discussions. T'nis 
work was supported by Deutsche Forschungsgemeinschaft and Alfried von Bohlen 
und  Halbach Stiftung. 
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